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Abstract. A deterministic spatial branch and bound global optimization algorithm for
problems with ordinary differential equations in the constraints has been developed by
Papamichail and Adjiman [A rigorous global optimization algorithm for problems with
ordinary differential equations. J. Glob. Optim. 24, 1–33]. In this work, it is shown that the
algorithm is guaranteed to converge to the global solution. The proof is based on showing
that the selection operation is bound improving and that the bounding operation is consis-
tent. In particular, it is shown that the convex relaxation techniques used in the algorithm
for the treatment of the dynamic information ensure bound improvement and consistency
are achieved.
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1. Introduction

Dynamic optimization problems are of great practical importance and a
number of methods can be applied for their solution (Sargent, 2000). One
class of approaches uses variable discretization in order to transform the
problem to a finite dimensional NLP. In complete discretization (known
as the simultaneous approach) both the state variables and the controls
are discretized (Tsang et al., 1975; Oh and Luus, 1997; Biegler, 1984).
The solution is carried out in the full space of variables. However, this
method results in an NLP problem with a large number of variables and
nonlinear equality constraints. In control parameterization (known as the
sequential approach) only the controls are discretized (Pollard and Sargent,
1970; Sargent and Sullivan, 1978; Goh and Teo, 1988; Vassiliadis et al.,
1994). The problem is solved using an NLP strategy. The dynamic sys-
tem is decoupled from the optimization stage and is integrated using well-
established techniques in order to evaluate the objective function and the
constraints. However, due to the nonconvexity of these formulations, only
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local solutions can be identified by most of the established gradient-based
NLP solvers.

Recently, deterministic global optimization algorithms have been applied
for the solution of dynamic optimization problems. Smith and Pantelides
(1996) applied their symbolic manipulation and spatial branch and bound
(BB) algorithm. Esposito and Floudas (2000a,b) used the αBB method
(Maranas and Floudas, 1994; Androulakis et al., 1995; Adjiman and
Floudas, 1996; Adjiman et al., 1998a,b). Singer and Barton (2002) pre-
sented a theory that can be utilized in a BB algorithm for the global solu-
tion of linear dynamic embedded problems. Barton and Lee (2003) have
extended this approach to linear hybrid systems.

The authors (Papamichail and Adjiman, 2002) have proposed a
deterministic spatial BB global optimization algorithm for problems with
ordinary differential equations (ODEs) in the constraints. Bilinear terms,
univariate concave terms and general twice continuously differentiable
terms can be tackled. A rigorous approach has been developed for the
convex relaxation of the dynamic information. The concept of differential
inequalities has been used to construct bounds on the space of solutions
of parameter dependent ODEs as well as on their second-order sensitivi-
ties. Recently, an alternative convex relaxation based on the construction
of linear dynamic systems has been proposed (Papamichail and Adjiman,
2004) and incorporated within the algorithm. This algorithm was applied
successfully to several case studies, using different combinations of the con-
vex relaxations. The proof of convergence for this algorithm is discussed in
this paper. In particular, it is shown that the convex relaxation proposed
by Papamichail and Adjiman (2002) has the necessary properties to ensure
convergence of the algorithm. The use of the convex relaxation based on
linear dynamic systems is not necessary to prove convergence and is there-
fore not considered here.

The statement of the dynamic optimization problem is given in Sec-
tion 2. The global optimization algorithm is presented in Section 3. These
first two sections provide the key concepts and notation needed for the
proof. Bound improvement is then discussed in Section 4 where the proper-
ties of the new convex relaxation procedure are exploited. The consistency
of the bounding operation is presented in Section 5. Based on these two
properties, the proof of convergence follows.

2. Problem statement

DEFINITION 2.1. Let I = [t0, tNS ] ⊂ �, I0 = (t0, tNS ], x = (x1, x2, . . . , xn)
T

and xk− = (x1, x2, . . . , xk−1, xk+1, . . . , xn)
T . The following notation is used:

f (t, x)=f (t, xk, xk−).
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The formulation of the dynamic optimization problem studied is given by:

min
p

J (x(ti, p),p ; i =0,1, . . . ,NS)

s.t.
ẋ =f (t, x,p) ∀t ∈I
x(t0)=x0(p)

gi(x(ti, p),p)�0 , i =0,1, . . . ,NS

pL �p �pU

(1)

where ti ∈I, x ∈�n are the state variables, ẋ ∈�n are their derivatives with
respect to t , and p ∈ �r are the parameters. The functions J , f , x0 and
gi, i = 0,1, . . . ,NS, are such that J : �n·(NS+1) ×�r �→�, f : I ×�n ×�r �→
�n, x0 : �r �→�n and gi : �n ×�r �→�si .

Systems with controls that depend on t can be transformed to this form
using control parameterization (Vassiliadis et al., 1994).

Remark 2.1. The following assumptions are made:

– J (x(ti, p),p; i = 0,1, . . . ,NS) is twice continuously differentiable with
respect to x(ti, p), i =0,1, . . . ,NS and p on �n·(NS+1) ×�r .

– Each element of gi(x(ti, p),p) is twice continuously differentiable with
respect to x(ti, p) and p, i =0,1, . . . ,NS on �n ×�r .

– Each element of f (t, x,p) is continuous with respect to t and is twice
continuously differentiable with respect to the states x and the parame-
ters p on I ×�n ×�r .

– Each element of x0(p) is twice continuously differentiable with respect
to the parameters p on �r .

– f (t, x,p) satisfies a uniqueness condition (see 12.IVa of Walter, 1970) on
I ×�n ×�r .

The sequential approach (Vassiliadis et al., 1994) is used for the local
solution of this dynamic optimization problem. Given values for the
parameters p, the ODE system, included in the constraints of problem (1),
can be integrated from t0 to tNS using a standard numerical technique.
After reaching tNS , the objective function and the constraints can be evalu-
ated. The evaluation of their gradients with respect to p can be done using
the parameter sensitivities. These are given from the solution of the sensi-
tivity equations:

ẋp(t, p)= ∂f

∂x
xp(t, p)+ ∂f

∂p
∀t ∈I,

where:

xp(t, p)= ∂x

∂p
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and

ẋp(t, p)= ∂

∂t

(
∂x

∂p

)
.

The initial condition for the sensitivity equations is given by:

xp(t0, p)= ∂x0

∂p
.

Remark 2.2. The solution x(ti, p) of the ODE in problem (1) with the
initial condition specified is twice continuously differentiable with respect
to the parameters p on �r (Papamichail and Adjiman, 2002).

3. Global optimization algorithm

The deterministic spatial BB global optimization algorithm for problems
with ODEs in the constraints that was developed by Papamichail and Adji-
man (2002) is presented briefly in this section. The convex relaxed problem
is first formulated. Each step of the algorithm is then presented.

3.1. formulation of the convex relaxation

A reformulation of the NLP problem (1) is given by:

min
x̂,p

J (x̂, p)

s.t.
gi(x̂i, p)�0, i =0,1, . . . ,NS

x̂i =x(ti, p), i =0,1, . . . ,NS

p ∈ [pL,pU ]

(2)

where the values of x(ti, p), i = 0,1, . . . ,NS are obtained by solving the
ODE system:

ẋ(t, p)=f (t, x(t, p),p) ∀t ∈I (3)

x(t0, p)=x0(p). (4)

3.1.1. Bounds on x̂i

The following remark can be used to construct bounds for the solutions of
ODE system (3)–(4).

Remark 3.1. If f is continuous and satisfies a uniqueness condition on
I0 ×�n × [pL,pU ] then the solution of the following ODE system satisfies
Theorem 3.3 in Papamichail and Adjiman (2002):
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ẋk(t)= inf fk(t, xk(t), [xk−(t), xk−(t)], [pL,pU ])

ẋk(t)= supfk(t, xk(t), [xk−(t), xk−(t)], [pL,pU ]) (5)

∀t ∈I and k =1,2, . . . , n

x(t0)= inf x0([pL,pU ])
(6)

x(t0)= supx0([pL,pU ])

which means that x(t) is a subfunction and x(t) is a superfunction for the
set of solutions of the ODE that appears in the constraints of the NLP
problem (1), i.e.,

x(t)�x(t,p)�x(t) ∀p ∈ [pL,pU ] ∀t ∈I,

where the inequalities are understood component-wise. Natural interval
extensions (Moore, 1966) are used as inclusion functions and directed out-
ward rounding is applied to the calculations in the system (5)–(6).

These bounds are also valid for the variable vectors x̂i that have been intro-
duced in the reformulated NLP problem:

x(ti)� x̂i �x(ti), i =0,1, . . . ,NS. (7)

3.1.2. Convex relaxation of J and gi

Any function q(z), which can be decomposed into a sum of convex, bilin-
ear, univariate concave and general nonconvex twice continuously differen-
tiable terms, can be written as

q(z)=fCT (z)+
bt∑

i=1

bizBi,1zBi,2 +
ut∑

i=1

fUT,i(zUT,i)+
nt∑

i=1

fNT,i(z), (8)

where fCT (z) is a convex term, bt is the number of bilinear terms, zBi,1 and
zBi,2 are the two variables in the ith bilinear term with coefficient bi , ut is
the number of univariate concave terms, fUT,i(zUT,i) is the ith univariate
concave term, zUT,i is the variable in the ith univariate concave term, nt

is the number of general nonconvex terms and fNT,i(z) is the ith general
nonconvex term.

It is assumed that the functions J and gij , i =0,1, . . . ,NS, j =1,2, . . . , si

are functions such as q(z). A convex relaxation for q(z) can be derived
by constructing a convex relaxation for each term. Convex terms do not
require any transformation. Bilinear terms, univariate concave terms and
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general nonconvex twice continuously differentiable terms are underesti-
mated using well-known techniques.

3.1.2.1. Underestimating bilinear terms. The convex envelope for the bilinear
term z1z2 over the domain [zL

1 , zU
1 ]× [zL

2 , zU
2 ] (McCormick, 1976; Al-Khayyal

and Falk, 1983) is given by:

max(zL
1 z2 + zL

2 z1 − zL
1 zL

2 , zU
1 z2 + zU

2 z1 − zU
1 zU

2 ).

Each bilinear term is replaced by a new variable w defined by w=z1z2. In
the relaxed problem, this equation has to be replaced by a convex under-
estimator and a concave overestimator as follows:

w � zL
1 z2 + zL

2 z1 − zL
1 zL

2
w � zU

1 z2 + zU
2 z1 − zU

1 zU
2

w � zL
1 z2 + zU

2 z1 − zL
1 zU

2
w � zU

1 z2 + zL
2 z1 − zU

1 zL
2 .

(9)

3.1.2.2. Underestimating univariate concave terms. For a univariate concave
function fUT (z), the convex envelope over the domain [zL, zU ] is simply
given by the linear function of z:

fUT (zL)+ fUT (zU)−fUT (zL)

zU − zL
(z− zL).

3.1.2.3. Underestimating general twice continuously differentiable terms. For
a general twice continuously differentiable function fNT (z) the α-based un-
derestimator (Maranas and Floudas, 1994; Androulakis et al., 1995) can be
used over the domain [zL, zU ]⊂�m:

fNT (z)+
m∑

i=1

αi(z
L
i − zi)(z

U
i − zi),

where the values for the non-negative αi parameters are calculated using
the scaled Gerschgorin method proposed by Adjiman et al. (1998b). This
method requires the use of a symmetric interval matrix [HfNT

] = ([hij , hij ])
such that [HfNT

] � HfNT
(z) = ∇2fNT (z) , ∀z ∈ [zL, zU ]. For any vector d =

(d1, d2, . . . , dn)
T with di >0,∀i =1,2, . . . , n, αi can be calculated by the fol-

lowing formula:
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αi =max

⎧⎨
⎩0,−1

2

⎛
⎝hii −

∑
j 	=i

|h|ij dj

di

⎞
⎠
⎫⎬
⎭ , (10)

where |h|ij = max{|hij |, |hij |}. Constant values for the vector d are used in
the present algorithm. The interval matrix [HfNT

] is calculated by apply-
ing natural interval extensions to the analytical expression for each second-
order derivative of fNT and is given by [HfNT

]=HfNT
([zL, zU ]). These values

for the αi parameters guarantee the convexity of the underestimator.

3.1.2.4. Overall convex underestimator. An overall convex underestimator
of the function introduced by equation (8), q(z), over the domain [zL, zU ]⊂
�m is given by:

q̆(z,w)=fCT (z)+
bt∑

i=1

biwi

+
ut∑

i=1

(
fUT,i(z

L
UT,i)+ fUT,i(z

U
UT,i)−fUT,i(z

L
UT,i)

zU
UT,i − zL

UT,i

(zUT,i − zL
UT,i)

)

+
nt∑

i=1

⎛
⎝fNT,i(z)+

m∑
j=1

αij (z
L
j − zj )(z

U
j − zj )

⎞
⎠ .

The constraints (9) must also be satisfied for each variable wi .

3.1.3. Convex relaxation of the set of equality constraints

The set of equalities can be written as two sets of inequalities:

x̂i −x(ti, p)�0, i =0,1, . . . ,NS

x(ti, p)− x̂i �0, i =0,1, . . . ,NS.

Their relaxation is given by:

x̂i + x̆−(ti, p)�0, i =0,1, . . . ,NS (11)

x̆(ti, p)− x̂i �0, i =0,1, . . . ,NS, (12)

where the ˘ superscript denotes the convex underestimator of the specified
function and x−(ti, p)=−x(ti, p). The function x̆(ti, p) is a convex under-
estimator of x(ti, p) and the function −x̆−(ti, p) is a concave overestimator
of x(ti, p). Two strategies have been developed by Papamichail and Adji-
man (2002) to derive these over and underestimators.
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3.1.3.1. Constant bounds. The constant bounds given by inequalities (7)
are valid convex underestimators and concave overestimators for x(ti, p).
This means that inequalities (11) and (12) can be replaced by inequalities
(7). These bounds do not depend on the parameters p themselves, but do
depend on the bounds on p.

3.1.3.2. α-based bounds. Based on Remark 2.2, x(ti, p) is a twice contin-
uously differentiable function of the parameters p on �r . This means that
the α-based underestimators can be used for the convex underestimation of
x(ti, p) and x−(ti, p) over the domain [pL,pU ]⊂�r (Esposito and Floudas,
2000a,b):

x̆k(ti, p)=xk(ti, p)+
r∑

j=1

α+
kij (p

L
j −pj)(p

U
j −pj)

i =0,1, . . . ,NS , k =1,2, . . . , n

x̆−
k (ti, p)=x−

k (ti, p)+
r∑

j=1

α−
kij (p

L
j −pj)(p

U
j −pj)

i =0,1, . . . ,NS , k =1,2, . . . , n

Papamichail and Adjiman (2002) proposed the following procedure for
the calculation of the α+

kij and α−
kij parameters. The scaled Gerschgorin

method can be utilized again. Constant values for the vector d are used.
Based on Remark 3.1 bounds are constructed for the ODE system that is
generated when the first and the second-order sensitivity equations are cou-
pled with the original ODE system (3)–(4). These bounds on the second-
order derivatives can then be used to construct each element of the interval
Hessian matrices [Hxk(ti )] � Hxk(ti )(p) = ∇2xk(ti, p), ∀p ∈ [pL,pU ] and
[Hx−

k (ti )
]=−[Hxk(ti )].

3.1.4. Convex relaxation of the NLP

After underestimating the objective function and overestimating the feasi-
ble region, the convex relaxation of the NLP problem (2) is given by:

min
x̂,p,w

J̆ (x̂, p,w)

s.t.
ği(x̂i , p,w)�0, i =0,1, . . . ,NS

x(ti)� x̂i �x(ti), i =0,1, . . . ,NS

C(x̂, p,w)�0
p ∈ [pL,pU ]

(13)
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where the ˘ superscript denotes the convex underestimator of the specified
function, C denotes the set of additional constraints arising from the con-
vex relaxation of bilinear terms and w denotes the vector of new variables
introduced by this relaxation. If the α-based method is also used for the
convex relaxation of the set of equality constraints then the following con-
straints can be added to the above formulation:

x̂i + x̆−(ti, p)�0, i =0,1, . . . ,NS

x̆(ti, p)− x̂i �0, i =0,1, . . . ,NS. (14)

3.2. spatial BB algorithm

After constructing the convex relaxation of the original NLP problem, a
spatial BB algorithm, which follows the one by Horst and Tuy (1996), can
be used in order to obtain the global minimum within an optimality mar-
gin. This algorithm is described in the present subsection. Some steps are
then analyzed further.

3.2.1. Structure of BB algorithm

Given a relative optimality margin, εr , and a maximum number of itera-
tions, MaxI ter:

Step 1: Initialization

Set the upper bound on the objective function: J u :=+∞.
Initialize the iteration counter: I ter :=0.
Initialize a list of subregions L to an empty list: L :=∅.
Initialize a region R to the region covering the full domain of vari-
ables p: R := [pL,pU ].

Step 2: Upper bound

Solve the original NLP problem with bounds on p given by R.
If a feasible solution pR is obtained with objective function J u

R, then
set the best feasible solution p∗ :=pR and J u :=J u

R.

Step 3: Lower bound

Obtain bounds on the differential variables.
If the α-based relaxation is additionally used for the overestimation of
the equality constraints then obtain bounds on the second-order sen-
sitivities.
Form the relaxed problem for R and solve it.
If a feasible solution p∗

R is obtained for R with objective function J �
R,

then add R to the list L together with J �
R and p∗

R.
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Step 4: Subregion selection

If the list is empty, then the problem is infeasible. Terminate.
Otherwise set the region R to the region from the list L with the low-
est lower bound: R :=arg min

Li∈L
J �

Li
.

Remove R from the list L.

Step 5: Checking for convergence

If
J u −J �

R
|J �

R| � εr , then terminate. The solution is p∗ with an objective

function J u.

If I ter =MaxI ter, then terminate and report
J u −J �

R
|J �

R| .

Otherwise increase the iteration counter by one: I ter := I ter +1.

Step 6: Branching within R
Apply a branching rule on subregion R to choose a variable on which
to branch and generate two new subregions, R1,R2 which are a par-
tition of R.

Step 7: Upper bound for each region

For i = 1,2, solve the original NLP problem with bounds on p given
by Ri .
If a feasible solution pRi

is obtained with objective function J u
Ri

<

J u, then update the best feasible solution found so far p∗ := pRi
,

set J u := J u
Ri

and remove from the list L all subregions R′ such that
J �

R′ >Ju.

Step 8: Lower bound for each region

Obtain bounds on the differential variables.
If the α-based relaxation is additionally used for the overestimation of
the equality constraints then obtain bounds on the second-order sen-
sitivities.
Form the relaxed problem for each subregion R1,R2 and solve it.
For i = 1,2, if a feasible solution p∗

Ri
is obtained for Ri with objective

function J �
Ri

�J u, then add Ri to the list L together with J �
Ri

and p∗
Ri

.
Go to step 4.

3.2.2. Step 6: Branching

The variable on which to branch is selected via one of the two strategies
analyzed by Papamichail and Adjiman (2002).



PROOF OF CONVERGENCE FOR GLOBAL OPTIMIZATION ALGORITHM 93

3.2.3. Step 7: Upper bound calculation

To reduce the computational expense arising from the repeated solution of
local dynamic optimization problems, the upper bound generation does not
have to be applied at every iteration of the algorithm. This does not affect
the ability of the algorithm to identify the global solution.

3.2.4. Step 8: Lower bound calculation

In the BB algorithm of Horst and Tuy (1996) if the relaxed problem is
feasible then it has to be as tight as the relaxation at its parent node to
ensure that the bounding operation is improving. A step to enforce this
requirement was included in the algorithm presented by Papamichail and
Adjiman (2002). However, in the following section it is shown that this is
not necessary because of the theoretical properties of the underestimation
strategy used.

4. Bound improvement

In this section, it is proved that the proposed selection operation is bound
improving. To this effect, a key result is obtained for the proposed convex
relaxation of the dynamic information: it is shown that partitioning of the
parameter space results in a monotonically improving approximation of the
objective function and feasible region.

THEOREM 4.1. If natural interval extensions are used as inclusion func-
tions and [pL

2 , pU
2 ]⊂ [pL

1 , pU
1 ], then the solution of the system

ẋk(t)= inf fk(t, xk(t), [xk−(t), xk−(t)], [pL
1 , pU

1 ])

ẋk(t)= supfk(t, xk(t), [xk−(t), xk−(t)], [pL
1 , pU

1 ]) (15)

∀t ∈I and k =1,2, . . . , n

x(t0)= inf x0([pL
1 , pU

1 ])
x(t0)= supx0([pL

1 , pU
1 ])

(16)

and the solution of the system

ẋ
k
(t)= inf fk(t, x

k
(t), [x

k−(t), xk−(t)], [pL
2 , pU

2 ])

ẋk(t)= supfk(t, xk(t), [x
k−(t), xk−(t)], [pL

2 , pU
2 ]) (17)

∀t ∈I and k =1,2, . . . , n

x(t0)= inf x0([pL
2 , pU

2 ])
x(t0)= supx0([pL

2 , pU
2 ])

(18)
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are such that

x(t)�x(t) ∀t ∈I (19)

and

x(t)�x(t) ∀t ∈I. (20)

Proof. Using natural interval extensions as inclusion functions and the
inclusion isotonicity property of interval operations the following is true:

[pL
2 , pU

2 ]⊂ [pL
1 , pU

1 ]⇒x0([pL
2 , pU

2 ])⊆x0([pL
1 , pU

1 ])

⇒
{

inf x0([pL
1 , pU

1 ]) � inf x0([pL
2 , pU

2 ])
supx0([pL

2 , pU
2 ]) � supx0([pL

1 , pU
1 ])

and using equations (16) and (18)

x(t0)�x(t0) (21)

and

x(t0)�x(t0).

If one of the following:

x(t)�x(t) ∀t ∈I0 (22)

or

x(t)�x(t) ∀t ∈I0

is not true then there exists ξ1 ∈I such that for some k ∈{1,2, . . . , n}
xk(ξ1)=x

k
(ξ1), (23)

ẋk(ξ1)> ẋ
k
(ξ1) (24)

and

x(t)�x(t) ∀t ∈ [0, ξ1], (25)

x(t)�x(t) ∀t ∈ [0, ξ1] (26)

or there exists ξ2 ∈I such that for some k ∈{1,2, . . . , n}
xk(ξ2)=xk(ξ2),

ẋk(ξ2)< ẋk(ξ2)
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and

x(t)�x(t) ∀t ∈ [0, ξ2],

x(t)�x(t) ∀t ∈ [0, ξ2].

Using equations (15) and (17) and inequality (24) the following must hold:

inf fk(ξ1, xk(ξ1), [xk−(ξ1), xk−(ξ1)], [pL
1 , pU

1 ])

> inf fk(ξ1, x
k
(ξ1), [x

k−(ξ1), xk−(ξ1)], [pL
2 , pU

2 ]). (27)

However, based on the inclusion isotonicity property of interval opera-
tions and using equation (23), inequalities (25) and (26) and the relation
[pL

2 , pU
2 ] ⊂ [pL

1 , pU
1 ], inequality (27) is not true. This contradiction estab-

lishes the claim that inequality (22) is true and combined with inequal-
ity (21) it proves inequality (19).

In the same manner inequality (20) can be proved.

LEMMA 4.1. If α
(1)
i �α

(2)
i �0, i =1,2, . . . ,m, then ∀z∈ [zL

2 , zU
2 ]⊆ [zL

1 , zU
1 ]⊂

�m:
m∑

i=1

α
(1)
i (zL

1,i − zi)(z
U
1,i − zi)�

m∑
i=1

α
(2)
i (zL

2,i − zi)(z
U
2,i − zi).

Proof. Let z∈ [zL
2 , zU

2 ]⊆ [zL
1 , zU

1 ]⊂�m. Then

(zL
1,i − zi)(z

U
1,i − zi)� (zL

2,i − zi)(z
U
2,i − zi)�0, i =1,2, . . . ,m.

If α
(1)
i �α

(2)
i �0, i =1,2, . . . ,m, then

α
(1)
i (zL

1,i − zi)(z
U
1,i − zi)�α

(2)
i (zL

2,i − zi)(z
U
2,i − zi)�0, i =1,2, . . . ,m

and consequently ∀z∈ [zL
2 , zU

2 ]⊆ [zL
1 , zU

1 ]⊂�m

m∑
i=1

α
(1)
i (zL

1,i − zi)(z
U
1,i − zi)�

m∑
i=1

α
(2)
i (zL

2,i − zi)(z
U
2,i − zi).

LEMMA 4.2. Let the symmetric interval matrices [H1] and [H2] be defined
such that [H1] = ([h(1)

ij , h
(1)

ij ]) and [H2] = ([h(2)
ij , h

(2)

ij ]). For any vector d(1) > 0
let α

(1)
i be calculated by

α
(1)
i =max

⎧⎨
⎩0,−1

2

⎛
⎝h

(1)
ii −

∑
j 	=i

|h|(1)
ij

d
(1)
j

d
(1)
i

⎞
⎠
⎫⎬
⎭ , (28)



96 IOANNIS PAPAMICHAIL AND CLAIRE S. ADJIMAN

where |h|(1)
ij = max{|h(1)

ij |, |h(1)

ij |} and for any vector d(2) > 0 let α
(2)
i be calcu-

lated by

α
(2)
i =max

⎧⎨
⎩0,−1

2

⎛
⎝h

(2)
ii −

∑
j 	=i

|h|(2)
ij

d
(2)
j

d
(2)
i

⎞
⎠
⎫⎬
⎭ , (29)

where |h|(2)
ij = max{|h(2)

ij |, |h(2)

ij |}. If d(1) = d(2) = d is a constant vector and
[H2]⊆ [H1], then α

(1)
i �α

(2)
i .

Proof. If [H2] ⊆ [H1], then from the definition of these interval matrices
the following can be derived:

h
(1)
ij �h

(2)
ij andh

(2)

ij �h
(1)

ij . (30)

Therefore,

|h|(1)
ij =max{|h(1)

ij |, |h(1)

ij |}�max{|h(2)
ij |, |h(2)

ij |}= |h|(2)
ij .

Hence, for any d(1) =d(2) =d >0

∑
j 	=i

|h|(1)
ij

dj

di

�
∑
j 	=i

|h|(2)
ij

dj

di

. (31)

From inequalities (30) and (31), it follows that

−1
2

⎛
⎝h

(1)
ii −

∑
j 	=i

|h|(1)
ij

dj

di

⎞
⎠�−1

2

⎛
⎝h

(2)
ii −

∑
j 	=i

|h|(2)
ij

dj

di

⎞
⎠ .

Therefore,

max

⎧⎨
⎩0,−1

2

⎛
⎝h

(1)
ii −

∑
j 	=i

|h|(1)
ij

dj

di

⎞
⎠
⎫⎬
⎭

�max

⎧⎨
⎩0,−1

2

⎛
⎝h

(2)
ii −

∑
j 	=i

|h|(2)
ij

dj

di

⎞
⎠
⎫⎬
⎭

and from (28) and (29) it follows that α
(1)
i �α

(2)
i .

LEMMA 4.3. Let

f̆
(1)
NT (z)=fNT (z)+

m∑
i=1

α
(1)
i (zL

1,i − zi)(z
U
1,i − zi) (32)
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and

f̆
(2)
NT (z)=fNT (z)+

m∑
i=1

α
(2)
i (zL

2,i − zi)(z
U
2,i − zi) (33)

be the α-based convex underestimators of the general nonconvex twice con-
tinuously differentiable function fNT (z) over the domains [zL

1 , zU
1 ] ⊂ �m and

[zL
2 , zU

2 ]⊂�m, respectively. Let the scaled Gerschgorin method, with constant
vector d >0, proposed by Adjiman et al. (1998b) be used for the calculation
of all the non-negative α

(1)
i and α

(2)
i parameters and let [H1] = ([h(1)

ij , h
(1)

ij ])�
HfNT

(z)=∇2fNT (z) ∀z∈ [zL
1 , zU

1 ] and [H2]= ([h(2)
ij , h

(2)

ij ])�HfNT
(z)=∇2fNT (z)

∀z∈ [zL
2 , zU

2 ] be the interval matrices needed. If [zL
2 , zU

2 ]⊆ [zL
1 , zU

1 ] and [H2]⊆
[H1], then f̆

(1)
NT (z)� f̆

(2)
NT (z) ∀z∈ [zL

2 , zU
2 ].

Proof. If the scaled Gerschgorin method proposed by Adjiman et al.
(1998b) is used for the calculation of all the non-negative α

(1)
i and α

(2)
i

parameters, then these can be given by equations (28) and (29). If d(1) =
d(2) =d >0 is a constant vector and [H2]⊆ [H1] then using Lemma 4.2 it is
proved that

α
(1)
i �α

(2)
i .

Therefore, using Lemma 4.1 ∀z∈ [zL
2 , zU

2 ]⊆ [zL
1 , zU

1 ]⊂�m the following is true:

m∑
i=1

α
(1)
i (zL

1,i − zi)(z
U
1,i − zi)�

m∑
i=1

α
(2)
i (zL

2,i − zi)(z
U
2,i − zi)

and using equations (32) and (33) f̆
(1)
NT (z)� f̆

(2)
NT (z) ∀z∈ [zL

2 , zU
2 ].

LEMMA 4.4. Let [H1] = ([h(1)
ij , h

(1)

ij ])�HfNT
(z)=∇2fNT (z) ∀z ∈ [zL

1 , zU
1 ] and

[H2]= ([h(2)
ij , h

(2)

ij ])�HfNT
(z)=∇2fNT (z) ∀z∈ [zL

2 , zU
2 ]. If the method described

in Section 3.1.2 is used for the derivation of α-based convex underestimators
of the general nonconvex twice continuously differentiable term fNT (z) and
[zL

2 , zU
2 ]⊆ [zL

1 , zU
1 ]⊂�m then [H2]⊆ [H1].

Proof. If the method described in Section 3.1.2 is used for the derivation
of α-based convex underestimators of the general nonconvex twice contin-
uously differentiable term fNT (z) then natural interval extensions are used
as inclusion functions. If [zL

2 , zU
2 ]⊆ [zL

1 , zU
1 ]⊂�m then based on the inclusion

isotonicity property of interval operations [H2]⊆ [H1].

LEMMA 4.5. Let [H1] � Hxk(ti )(p) = ∇2xk(ti, p) ∀p ∈ [pL
1 , pU

1 ] and [H2] �
Hxk(ti )(p)=∇2xk(ti, p) ∀p ∈ [pL

2 , pU
2 ]. Let also [H3] �Hx−

k (ti )
(p)=∇2x−

k (ti, p)



98 IOANNIS PAPAMICHAIL AND CLAIRE S. ADJIMAN

∀p∈ [pL
1 , pU

1 ] and [H4]�Hx−
k (ti )

(p)=∇2x−
k (ti, p) ∀p∈ [pL

2 , pU
2 ]. If the method

described in Section 3.1.3 is used for the derivation of α-based convex un-
derestimators of the general nonconvex twice continuously differentiable func-
tions xk(ti, p) and x−

k (ti, p) and [pL
2 , pU

2 ]⊂ [pL
1 , pU

1 ]⊂�r then [H2]⊆ [H1] and
[H4]⊆ [H3].

Proof. If the method described in Section 3.1.3 is used for the derivation
of α-based convex underestimators of the general nonconvex twice contin-
uously differentiable functions xk(ti, p) and [pL

2 , pU
2 ] ⊂ [pL

1 , pU
1 ] then using

Theorem 4.1 [H2]⊆ [H1]. In the same manner [H4]⊆ [H3].

LEMMA 4.6. If the convex envelope cR(f (z)) is used for the convex under-
estimation of a function f (z) over the domain R then cR(f (z))� cR′(f (z))

∀z∈R′ ⊆R.

Proof. The proof is derived easily from the definition of convex enve-
lopes (Falk and Soland, 1969).

THEOREM 4.2. Let the method described in Section 3.1 be used for the
construction of the convex relaxation of the original NLP problem (1). If
the relaxed problem is feasible on R′, then J l

R �J l
R′ ∀p∈R′ ⊂R. This means

that the lower bound calculated at a node of the spatial BB algorithm is at
least as tight as that of the parent node.

Proof. If the relaxed problem is feasible on R′, then J l
R �J l

R′ ∀p ∈R′ ⊂
R is implied if the feasible region of the relaxed problem derived on R′ is
at least as tight as that derived on R ∀p∈R′ and the objective function of
the relaxed problem derived on R′ is at least as tight as that derived on R
∀p ∈R′.

If the method described in Section 3.1 is used for the calculation of con-
stant bounds on the variables x̂i , i = 0,1, . . . ,NS, then based on Theo-
rem 4.1 the bounds derived on R′ are at least as tight as those derived on
R ∀p ∈R′.

The convex relaxation of the bilinear terms is derived using the convex
envelope proposed by McCormick (1976). Based on the previous statement
and Lemma 4.6 the relaxation of a bilinear term derived on R′ is at least
as tight as that derived on R ∀p ∈R′.

The convex underestimation of the functions gij , i = 0,1, . . . ,NS, j =
1,2, . . . , si derived on R′ is at least as tight as that derived on R ∀p ∈R′

if the same is true for the convex relaxation of univariate concave terms
and general nonconvex twice continuously differentiable terms. The con-
vex envelope is used for the underestimation of univariate concave terms
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and by using Lemma 4.6 the required property can be shown. For the
convex underestimation of general nonconvex twice continuously differen-
tiable terms the α-based convex underestimator is used and based on Lem-
mas 4.4 and 4.3 the required property can be shown.

If the α-based method is additionally used for the convex relaxation
of the set of equality constraints then based on Lemmas 4.5 and 4.3
the relaxation derived on R′ is at least as tight as that derived on
R ∀p ∈R′.

Using all the previous statements it is shown that the feasible region of
the relaxed problem derived on R′ is at least as tight as that derived on R
∀p ∈R′.

The required property for the objective function of the relaxed problem
can be shown if the analysis followed for the functions gij , i =0,1, . . . ,NS,
j =1,2, . . . , si is also followed for the function J .

Remark 4.1. The scaled Gerschgorin method proposed by
Adjiman et al. (1998b) requires the use of a vector d >0. In the algorithm
presented in Section 3 a constant d is used. If d varies as branching occurs
then at Step 8 of the algorithm the value of each α has to be less than or
equal to its value at the parent node so as to guarantee bound improve-
ment. If this is not true, then the value at the parent node can be used as
it is a valid one.

DEFINITION 4.1 (IV.6 in Horst and Tuy, 1996). A selection operation is
said to be bound improving if, at least each time after a finite number of
iterations at least one partition element where the actual bound is attained
is selected for further partition.

LEMMA 4.7. The selection operation in the BB algorithm presented in Sec-
tion 3 is bound improving.

Proof. In Step 4 of the BB algorithm presented in Section 3 the region
where the actual bound is attained is selected for further partition. Hence,
the selection operation is bound improving based on Definition 4.1.

5. Consistency of the bounding operation

In this section, it is proved that the proposed bounding operation is con-
sistent. For this purpose, it is shown that the convex relaxation of the
dynamic information coincides with the original dynamic variables in the
limit of partitioning. Similar properties are derived for the convex relaxa-
tion of the nonconvex terms.
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DEFINITION 5.1 (IV.4 in Horst and Tuy, 1996). A bounding operation
is called consistent if at every step any unfathomed partition element can
be further refined, and if any infinitely decreasing sequence {RI terq

} of suc-
cessively refined partition elements satisfies:

lim
q→∞(J u

I terq
−J l

RI terq
)=0.

The last relation will be implied by the most practical requirement:

lim
q→∞(J u

RI terq
−J l

RI terq
)=0, (34)

which simply states that, whenever a decreasing sequence of partition sets
converges to a certain limit set, the bounds also must converge to the exact
minimum of J over this limit set.

LEMMA 5.1. Let ε � 0 be a finite number such that ||pU −pL||� ε, where
|| · || is the max norm. If there exists a finite number λ�0 such that for t1 ∈
I ||x(t1)−x(t1)||�λε then there exists a finite number ν �0 such that

||x(t)−x(t)||�νε ∀t ∈I, t � t1,

where x(t) and x(t) ∀t ∈I are given by the solution of the system

ẋk(t)= inf fk(t, xk(t), [xk−(t), xk−(t)], [pL,pU ])

ẋk(t)= supfk(t, xk(t), [xk−(t), xk−(t)], [pL,pU ]) (35)

∀t ∈I and k =1,2, . . . , n

x(t0)= inf x0([pL,pU ])
x(t0)= supx0([pL,pU ])

(36)

f is a continuous function and natural interval extensions are used as inclu-
sion functions.

Proof. Using equations (35), natural interval extensions as inclusion
functions and the inclusion isotonicity property of interval operations the
following are true:

||ẋ(t2)− ẋ(t2)||= n
max
k=1

{ẋk(t2)− ẋk(t2)}

= n
max
k=1

{supfk(t2, xk(t2), [xk−(t2), xk−(t2)], [pL,pU ])

− inf fk(t2, xk(t2), [xk−(t2), xk−(t2)], [pL,pU ])}
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� n
max
k=1

{supfk(t2, [x(t2), x(t2)], [pL,pU ])

− inf fk(t2, [x(t2), x(t2)], [pL,pU ])}
= n

max
k=1

w(fk(t2, [x(t2), x(t2)], [pL,pU ]))

=w(f (t2, [x(t2), x(t2)], [pL,pU ]))

where w(·) is the width of an interval. Therefore, if ε�0 is a finite number
such that ||pU −pL||�ε and there exists a finite number µ�0 such that for
t2 ∈I ||x(t2)−x(t2)||�µε, then there exists a finite number κ �0 such that

||ẋ(t2)− ẋ(t2)||�κε.

For t3 = t2 +
t , 
t >0 the following is true:

lim

t→0

||x(t3)−x(t3)||= lim

t→0

||x(t2)−x(t2)+ (ẋ(t2)− ẋ(t2))
t ||
� ||x(t2)−x(t2)||+ lim


t→0
||ẋ(t2)− ẋ(t2)||
t

�µε +κε lim

t→0


t =µε +0=µε,

Hence,

lim

t→0

||x(t3)−x(t3)||�µε.

Based on the latter statements and the fact that there exists a finite num-
ber λ� 0 such that for t1 ∈I ||x(t1)− x(t1)||�λε, there also exists a finite
number ν �0 such that

||x(t)−x(t)||�νε ∀t ∈I, t � t1.

LEMMA 5.2. If f and x0 are continuous and natural interval extensions are
used as inclusion functions, then the solution of the system:

ẋk(t)= inf fk(t, xk(t), [xk−(t), xk−(t)], [pL,pU ])

ẋk(t)= supfk(t, xk(t), [xk−(t), xk−(t)], [pL,pU ]) (37)

∀t ∈I and k =1,2, . . . , n

x(t0)= inf x0([pL,pU ])
x(t0)= supx0([pL,pU ])

(38)

is such that
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lim
||pU −pL||→0

(xk(t)−xk(t))=0 ∀t ∈I, k =1,2, . . . , n.

Proof. Let ε�0 be a finite number such that ||pU −pL||�ε. Using equa-
tions (38) there exists a finite number λ�0 such that

||x(t0)−x(t0)||= || supx0([pL,pU ])− inf x0([pL,pU ])||
=w(x0([pL,pU ]))�λε.

If natural interval extensions are used as inclusion functions then from
Lemma 5.1 it can be proved that there exists a finite number ν � 0 such
that

||x(t)−x(t)||�νε ∀t ∈I,

where x(t) and x(t) ∀t ∈ I are given by the solution of system (37)–(38).
Therefore ∀t ∈I, k =1,2, . . . , n the following is true:

0� lim
||pU −pL||→0

(xk(t)−xk(t))� lim
||pU −pL||→0

||x(t)−x(t)||
= lim

ε→0
||x(t)−x(t)||� lim

ε→0
νε =0.

Hence,

lim
||pU −pL||→0

(xk(t)−xk(t))=0 ∀t ∈I, k =1,2, . . . , n.

LEMMA 5.3. Let z∈�m and i, j ∈{1,2, . . . ,m} and let

Z(z)={zizj −max(zL
i zj + ziz

L
j − zL

i zL
j , zU

i zj + ziz
U
j − zU

i zU
j )}.

The following is always true:

lim
||zU −zL||→0

max
z∈[zL,zU ]

Z(z)=0.

Proof. The following has been proved by Androulakis et al. (1995):

max
z∈[zL,zU ]

Z(z)= (zU
i − zL

i )(zU
j − zL

j )

4

and therefore,

lim
||zU −zL||→0

max
z∈[zL,zU ]

Z(z)= lim
||zU −zL||→0

(zU
i − zL

i )(zU
j − zL

j )

4
=0.
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LEMMA 5.4. Let

f̆NT (z)=fNT (z)+
m∑

i=1

αi(z
L
i − zi)(z

U
i − zi),

where z∈ [zL, zU ]⊂�m. The following is always true:

lim
||zU −zL||→0

max
z∈[zL,zU ]

(fNT (z)− f̆NT (z))=0.

Proof. The following has been proved by Androulakis et al. (1995):

max
z∈[zL,zU ]

(fNT (z)− f̆NT (z))= 1
4

m∑
i=1

αi(z
U
i − zL

i )2

and therefore,

lim
||zU −zL||→0

max
z∈[zL,zU ]

(fNT (z)− f̆NT (z))

= lim
||zU −zL||→0

1
4

m∑
i=1

αi(z
U
i − zL

i )2 =0.

LEMMA 5.5. Let fUT (z) be a univariate concave function, where z ∈ �. If
f̆UT (z) is the secant underestimator over the domain [zL, zU ]⊂�, then

lim
||zU −zL||→0

max
z∈[zL,zU ]

(fUT (z)− f̆UT (z))=0.

Proof. The secant underestimator is the convex envelope of a univariate
concave term, which means that it is the tightest possible convex underesti-
mator. If f̆α(z) is the α-based underestimator (Maranas and Floudas, 1994;
Androulakis et al., 1995) of fUT (z) over the domain [zL, zU ]⊂�, then

max
z∈[zL,zU ]

(fUT (z)− f̆UT (z))� max
z∈[zL,zU ]

(fUT (z)− f̆α(z))= 1
4
α(zU − zL)2

and therefore,

0� lim
||zU −zL||→0

max
z∈[zL,zU ]

(fUT (z)− f̆UT (z))� lim
||zU −zL||→0

1
4
α(zU − zL)2.

Since lim
||zU −zL||→0

1
4α(zU − zL)2 =0,

lim
||zU −zL||→0

max
z∈[zL,zU ]

(fUT (z)− f̆UT (z))=0.
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LEMMA 5.6. Let A(z) : �m �→� and B(z) : �m �→�. Let also A(z)�0 and
B(z)�0 ∀z∈ [zL, zU ]⊂�m and

lim
||zU −zL||→0

max
z∈[zL,zU ]

A(z)= lim
||zU −zL||→0

max
z∈[zL,zU ]

B(z)=0.

Then

lim
||zU −zL||→0

max
z∈[zL,zU ]

{A(z)+B(z)}=0.

Proof. If A(z)�0 and B(z)�0 ∀z∈ [zL, zU ] then

0� max
z∈[zL,zU ]

{A(z)+B(z)}� max
z∈[zL,zU ]

{A(z)}+ max
z∈[zL,zU ]

{B(z)}

and therefore,

0� lim
||zU −zL||→0

max
z∈[zL,zU ]

{A(z)+B(z)}
= lim

||zU −zL||→0
max

z∈[zL,zU ]
A(z)+ lim

||zU −zL||→0
max

z∈[zL,zU ]
B(z)=0.

Hence,

lim
||zU −zL||→0

max
z∈[zL,zU ]

{A(z)+B(z)}=0.

THEOREM 5.1. The bounding operation in the BB algorithm presented in
Section 3 is consistent.

Proof. Based on Definition 5.1 and the most practical requirement (34)
a bounding operation is called consistent if at every step any unfath-
omed partition element can be further refined and whenever a decreasing
sequence of partition sets converges to a certain limit set, the bounds also
converge to the exact minimum of J over this limit set. The first require-
ment is true for the BB algorithm presented in Section 3. The second
requirement is implied if whenever a decreasing sequence of partition sets
converges to a certain limit set, the maximum distances between the con-
straints and their convex relaxation and the maximum distance between the
objective function and its convex underestimation converge to zero.

Based on Lemma 5.2 the latter requirement is true for the equality con-
straints and based on Lemma 5.3 the same is true for the relaxation of
the bilinear terms. The distances between the functions gij , i =0,1, . . . ,NS,
j =1,2, . . . , si and their convex relaxation is a summation of the distances
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between the univariate concave terms and their convex underestimator and
the distances between the general nonconvex twice continuously differen-
tiable terms and their convex underestimator. Based on Lemmas 5.4, 5.5
and 5.6 whenever a decreasing sequence of partition sets converges to a
certain limit set, the maximum distances converge to zero.

The required property for the maximum distance between the objective
function and its convex underestimation can be shown if the analysis fol-
lowed for the functions gij , i =0,1, . . . ,NS, j =1,2, . . . , si is also followed
for the function J .

6. Convergence of the spatial BB algorithm

THEOREM 6.1 (IV.3 in Horst and Tuy, 1996). In the infinite BB proce-
dure, suppose that the bounding operation is consistent and the selection oper-
ation is bound improving. Then the procedure is convergent.

COROLLARY 6.1. The BB algorithm presented in Section 3 converges to
the global minimum of the original problem if MaxI ter is set to ∞ and εr

is set to 0.

Proof. If MaxI ter = ∞ and εr = 0, then the BB algorithm presented in
Section 3 is an infinite BB procedure and follows the one by Horst and Tuy
(1996). The selection operation is bound improving based on Lemma 4.7.
The bounding operation is consistent based on Theorem 5.1. From The-
orem 6.1, it is deduced that the BB algorithm is a convergent procedure.

7. Conclusions

Most of the existing algorithms for the optimization of systems which are
described by ODEs can produce only local optimum solutions that can
be used as an upper bound for the global optimum. A deterministic spa-
tial BB global optimization algorithm for problem with ODEs in the con-
straints was developed by Papamichail and Adjiman (2002). Well known
techniques were used for the required convex relaxation of bilinear terms,
univariate concave terms and general nonconvex twice continuously differ-
entiable terms.

The proof of convergence for this algorithm has been presented here.
It is based on a bound improving selection operation and a consistent
bounding operation. This proof is valid for any BB algorithm which fol-
lows the algorithm of Horst and Tuy (1996) and is applied to an NLP
problem involving a subset of the nonconvex terms discussed in this
work.
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